
Deconfined non-abelian anyons

from quantum loops and nets

Paul Fendley

It has proved to be quite tricky to find a non-abelian extension of the toric code, i.e. find

T -invariant spin models whose quasiparticles are non-abelian anyons.
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Here I’ll describe the simplest (so far!) such models with non-abelian topological order in

the ground state.

They

1. require only interactions around a face (e.g. four-spin interactions on the square

lattice)

2. are naturally expressed in terms of loops and nets simultaneously

3. possess “quantum self-duality”
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Outline:

1. Quantum loops

2. Crashing the d =
√

2 barrier

3. Quantum nets

4. Quantum self-duality

To appear “next week”

Essential ingredients:

Coupled Potts models: with J. Jacobsen

The Temperley-Lieb algebra and the chromatic polynomial: with V. Krushkal

Quantum Potts nets: with E. Fradkin

The Potts model and the BMW algebra: with N. Read
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Why quantum loops?

A convenient way of describing non-abelian anyons is in terms of their wordlines.

Then their statistics is the behavior of the wavefunction under braiding of the worldlines.

Brading is a purely topological property, and so if realizable, might prove the basis for a

fault-tolerant quantum computer.

4



It is convenient to project the world line of the particles onto the plane. Then the braids

become overcrossings and undercrossings

The braids must satisfy the consistency condition

=

which in closely related contexts is called the Yang-Baxter equation.
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A simple way of satisfying the consistency conditions leads to the Jones polynomial in

knot theory. Replace the braid with the linear combination

1/2

= q 1/2 1/2q

= q q 1/2

so that the lines no longer cross. q is a parameter which is a root of unity in the cases of

interest: Fibonacci anyons corresponds to q = eiπ/5.
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This gives a representation of the braid group if the resulting loops satisfy d-isotopy.

• isotopy: Configurations related by deforming without making any lines cross receive

the same weight.

• d: A configuration with a closed loop receives weight

d = q + q−1

relative to the configuration without the loop.
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d is the quantum dimension of the anyon. The dimension of theN -anyon Hilbert space

grows as dN ; think of it as the number of anyons created and annihilated in the loop.

If you like algebras, the proper framework to analyze this is the Temperley-Lieb algebra,

which graphically is

== d
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The task is now to find a lattice model whose quasiparticles have such braiding.

The clever idea of the the quantum loop model is to use these pictures to build the model:

1. find a 2d classical loop model which has a critical point

2. use each loop configuration as a basis element of the quantum Hilbert space

3. find a Hamiltonian whose ground state a sum over loop configurations with the

appropriate weighting, so that

4. if you “cut” a loop, you end up with two deconfined anyonic excitations

Kitaev; Moessner and Sondhi; Freedman
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In quantum loop models, each loop in the ground state gets a weight d (= τ for

Fibonacci)

i.e. the ground state Ψ is the sum over all loop configurations

|Ψ〉 =
∑

L
dnL |L〉

where nL is the number of loops in configuration L.
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The excitations with non-abelian braiding are defects in the sea of loops.

When the defects are deconfined, they will braid with each other like the loops in the

ground state.

When

d = 2 cos[π/(k + 2)] i.e. q = eiπ/(k+2),

these are the statistics of Wilson loops in SU(2)k Chern-Simons theory

Witten; Freedman, Nayak, Shtengel, Walker, and Wang
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To have non-abelian braiding, the quantum loop models need to be gapped and have

topological order.

However, for this all to work, the classical loop model needs to have a critical point.

In a little more detail...
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The classical models being discussed have partition functions of the form

Z =
∑

L
w(L)KL(L)

where

w(L) is the topological weight of configuration L,

L(L) is the length of all the loops in L,

K is the weight per unit length

For closed loops which do not touch or cross, we have

w(L) = NnL

for some parameter N . This is usually called the O(N) loop model.
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For the O(N) loop model in two dimensions, the phase diagram is

short loops

dilute

dense

Nfully−packed 2

1/K

Typically, a critical point can occur when K ≈ 1 (for the honeycomb lattice, the

dilute-dense critical line occurs at K = Kc = [2 +
√

2−N ]−1/2). The dense critical

line is stable throughout the shaded region.

For N > 2, the model is not critical for any K – the partition function is dominated by

short loops and so is not scale-invariant.
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Important point:

At a critical point, loops of all sizes contribute to the partition function in the long-distance

limit. This behavior is necessary to get topological order – otherwise a length scale

appears.

This length scale physically is the confinement length.

15



Thus to build a quantum loop model from the classical O(N) loop model, we must have

N ≤ 2.

In the wave function, each loop has weight d = q + q−1. When q is a root of unity,

d ≤ 2.

However: This is quantum mechanics!
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In any correlation function, each configuration is weighted by the probability amplitude

squared. Thus with the naive inner product that all loop configurations are orthonormal,

N = d2

We must have d ≤ √
2 for this construction to work!

Fibonacci anyons have d = τ = 2 cos(π/5) >
√

2.
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There are two ways of crashing through the d =
√

2 barrier to find quantum loop models

whose deconfined excitations are Fibonacci anyons:

• Allow the loops to branch, so that they are not really loops, but rather nets.

• Change the inner product in the quantum-mechanical model.

It turns out that the two are essentially the same!
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In the completely packed loop model, every link of the lattice is covered by a loop.

The only degrees of freedom are therefore the two choices of how the loops avoid each

other at each vertex:

|1〉 = |1̂〉 =

There is thus a quantum two-state system at every vertex.
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If we set 〈1|1̂〉 = 0, then we have the d =
√

2 barrier.

So instead, don’t make them orthogonal!

〈1|1〉 〈1|1̂〉
〈1̂|1〉 〈1̂|1̂〉


 =


 1 λ

λ∗ 1




For this to be positive definite, |λ| < 1.
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Keep the ground state

|Ψ〉 =
∑

L
dnL |L〉

so that now

〈Ψ|Ψ〉 =
∑

L

∑

M
d(nL+nM)/2λnX

is a sum over two flavors of loops L andM, which are different at nX vertices.
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Good news #1:

The corresponding classical loop model with d = 2 cos(π/(k + 2)) is critical when

λ < λc, where

λc = −
√

2 sin
(

π(k − 2)
4(k + 2)

)

ferro
λCdecoupled

antiferro
non−critical decoupled

Fendley and Jacobsen

The ground state of the quantum model therefore is a sum over loops of all length scales.

The excitations should be deconfined!
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Good news #2:

This inner product has nice topological properties.

Consider two four-anyon states with inner products:

ηηη χ

|η〉 and |χ〉 are topologically equivalent to |1〉 and |1̂〉, and 〈χ|η〉 is topologically

equivalent to a single loop. Thus we indeed want 〈1̂|1〉 6= 0.
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In fact, maybe

λ =
〈1̂|1〉√
〈1|1〉 〈1̂|1̂〉

=
〈χ|η〉√
〈χ|χ〉 〈η|η〉

= ±1
d

???

Good news #1 means we should choose λ negative.

Setting λ = −1/d leads to...
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Good news #3:

Loops are nets!

Two natural orthonormal bases:

• (|0〉, |1〉), where

|0〉 =
1√

d2 − 1

(
d|1̂〉+ |1〉

)

• (|0̂〉, |1̂〉), where

|0̂〉 =
1√

d2 − 1

(
d|1〉+ |1̂〉

)
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This indeed yields 〈0|1〉 = 〈0̂|1̂〉 = 0 and 〈1|1〉 = 〈1̂|1̂〉 = 1.

The unitary transformation relating the two bases is

F =


〈0̂|0〉 〈0̂|1〉
〈1̂|0〉 〈1̂|1〉


 =

1
d


 1

√
d2 − 1

√
d2 − 1 −1



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This F is the fusion matrix for anyons from quantum loops!

+

= F
11

01

+ F

F00

10

= F

When lines meet at a vertex, they fuse to one of two states:

1
2
⊗ 1

2
= 0⊕ 1
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This suggests that we represent the state |1〉 as a filled link on the net lattice,

e.g. if all vertices are in state |1〉:

Vertices of the loop lattice correspond to edges of the net lattice, so loops on Kagome

correspond to nets on the honeycomb.
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I call these nets because when the ground state |Ψ〉 is written in this orthonormal basis,

there cannot be a single state |1〉 touching a vertex!

States which do contribute to |Ψ〉 look like
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The weight of each loop configuration in the ground state is still dnL .

Going to the orthonormal basis gives the weight of each net |N〉 to be

〈N |Ψ〉 =
(

1√
d2 − 1

)LN

χ bN (d2)

where χ bN (d2) is the chromatic polynomial, and LN is the length of the net (the number

of links covered).
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The chromatic polynomial only depends on the topology of N . When Q is an integer,

χ(Q) is the number of ways of coloring each region with Q colors such that adjacent

regions have different colors.

2

2

2

3 3

3 3

3

2

1

Clasically, think of these loops as domain walls in the low-temperature expansion of the

Q-state Potts model.
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Good news #4:

Quantum self-duality means that on the square lattice, only four-spin interactions are

required in the Hamiltonian!

In Levin and Wen’s exactly solvable “string-net” models, 12-spin interactions are required.
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Instead of writing the ground state |Ψ〉 in terms of nets, can also write them in terms of

dual nets |D〉, in the (0̂, 1̂) basis.

The dual nets live on the links of the dual of the net lattice, e.g. for loops on Kagomé

when all vertices are in state |1̂〉:
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The weight of each dual net |D〉 in the ground state is

〈D|Ψ〉 =
(

1√
d2 − 1

)LD

χ bD(d2)

This is the same ground state |Ψ〉 in a new basis!

This quantum self-duality is highly non-obvious, and extremely useful.
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A Hamiltonian H with Ψ a ground state can be found simply by demanding that H

annihilate all states which are not nets and annihilate all states which are not dual nets.

For the square lattice:

H =
∑
+

[P1P0P0P0 + rotations]

+
∑

¤
[Pb1Pb0Pb0Pb0 + rotations]

where Pi projects onto the states |i〉, and Pbi = FPiF .

This is very much a non-abelian version of Kitaev’s toric code.
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Conclusions

• With the right inner product, we can crash the d =
√

2 barrier and find T -invariant

lattice models with e.g. Fibonacci anyons.

• With the right inner product, loops and nets are equivalent.

• With the right inner product, the models exhibit quantum self-duality. The Hamiltonian

needs involve only four-spin interactions.

• However, because d > 1, here the ground state should support non-abelian anyons!

• Pound your head on the wall enough, and sometimes the wall cracks before your

head...
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